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A deformed oscillator with Coulomb energy spectrum 
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Abstract. A deformed oscillator, with eigenvalues equal to the eigenvalues of the Schrodin- 
ger equation with the Coulomb potential, is constructed. The deformed oscillator algebra 
has a polynomial realization and the associate deformed operations of integration and 
differentiation are studied. 

1. Introduction 

The q-deformed algebras SU,(2), Uq(l ,  l ) ,  . . . were introduced by Kulish and Sklyanin 
(1982), Kulish and Reshetikhin (1983), Sklyanin (1982) and Jimbo (1985, 1986) as a 
mathematical tool useful for the solution of the Yang-Baxter equation. A collection 
of the original papers on this subject are assembled in Jimbo (1990). Biedenharn (1989) 
introduced the q-deformed harmonic oscillator and constructed a realization of the 
SUJ2); this was done independently by Macfarlane (1989). 

Initially, the q-deformed harmonic oscillator was considered as an intermediate 
step to study the deformed quantum algebras as SU,(2), Uq(l, I ) ,  . . . whose applica- 
tions are relevant in inverse problems and in other branches of physics. The quantum 
mechanical systems whose properties could be described by the q-deformed oscillator, 
are the subject of recent investigations. Floratos and Tomaras (1990) showed that if 
a particle moves in the field of a shielded magnetic flux on a discretized cycle, then 

SOS et a/ (1991b) have studied the hydrogen molecular spectrum, using the q-deformed 
anharmonic oscillator energy spectrum. Bonatsos et al(1991a) found that the potential 
with the same WKB spectrum as the q-deformed oscillator has similarities with the 
modified Poschl-Teller potential. It is worth noticing that the Poschl-Teller potential 
has the same energy spectrum as the fermionic oscillator, studied by Ohnuuki and 
Kamefuchi (1982). The q-deformed oscillator constitutes a special type of deformation 
of the ordinary harmonic oscillator, but there are other deformation schemes known 
in the literature, such as the deformed oscillator given by Arik and Coon (1976), the 
oscillator given by Ohnuuki and Kamefuchi (1982), its q-deformed version given by 
Floreanini and Vinet (1990a), and the two-parameter deformed oscillator studied by 
Chahrabati and Jagannathan (1991) and by Jannousis el a /  (1991). These oscillator 
algebras can be studied by a unified generalized oscillator scheme given by several 
authors (Odaka el a/ 1991, Jannousis 1990, Beckers and Debergh 1991, and Daskaloyan- 
nis 1991). The construction of generalized deformed oscillators corresponding to well 
known potentials and the study of the correspondence between the properties of the 
conventional potential picture and the algebraic one, using deformed oscillators, seems 
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to be an  attractive field of investigation. The correspondence between the algebraic 
and the potential picture for an energy spectrum is analogous to the correspondence 
ofthe potential model and the creation and destruction operator algebra in the harmonic 
oscillator case. The construction of a deformed oscillator corresponding to the Poschl- 
Teller energy spectrum is studied by Daskaloyannis (1992). The idea of using algebraic 
methods for solving quantum mechanical problems (exactly or partially) was studied 
by different authors, a reference review is given by Shifman (1989), who proposed the 
term algebraization of the spectral problem, and related references are cited there, !E 
these investigations, the quantum Hamiltonians are written using quadratic and linear 
combinations of the generators of known classical algebras as SU(2), 0(4), etc. A 
relevant paper treating the bound and scattering states of the Poschl-Teller potential 
is given by  Alhassid et a/  (1983). The difference between the method which is proposed 
in this paper and the above-cited references arises from the fact that here we propose 
an ab initio analytical construction of an oscillator algebra and of the corresponding 
Fock space; the constructed deformed oscillator has the same energy spectrum for a 
given potential. 

The energy spectra can be classified in three categories: 
(i) The number of the energy eigenvalues is infinite and the energy spectrum does 

not have any finite accumulation point. This is the case of the harmonic oscillator or 
of the q-deformed oscillator, with q being a real positive number. The algebra of the 
destruction, creation and number operators of these cases is very well known and the 
Fock space is well defined. The differentiation and the integration on the polynomial 
representation on the harmonic oscillator define an analysis which is the usual analysis 
(i.e. Taylor theorem, special functions theory, etc.), while in the case ofthe q-deformed 
oscillator the corresponding analysis is the same as the q-analysis, worked by the 
mathematicians many years ago (Exton 1983, Andrews 1986). For more recent literature 
on this subject see Floreanini and Vinet (1990b, 1991) and Bracken er a1 (1991). 

(ii) The energy spectrum is a finite set. This is the case of the q-deformed oscillator, 
with q being a root of unity (see Yan Hong 1990, Jian-Hui et al 1991, Baulieu and 
Floratos 1991) or the case of the Poschl-Teller or Morse potential (see Daskaloyannis 
1992). 

(iii) The energy spectrum is a set with a denombrable set of points with one 
c?ccsmc!i!inn point, which cc?n bt. shifted to zero. ??lis is !he C.;ISP of !he Cov!emb 
potential. This special category is the subject of this paper. 

The paper is organized as follows: In section 2, we present a short description of 
the generalized deformed oscillator algebra. In section 3 the deformed oscillator algebra, 
having an energy spectrum equivalent to the Coulomb energy spectrum, is constructed. 
In section 4 the associated deformed differentiation and integration are studied. 

2. The generalized deformed oscillator algebra 

A general deformation of the harmonic oscillator can be given by the basic relation 

f ( a a t ) - f ( a + a ) =  I (1) 

where a and a t  are conjugate operators, f (x)  is a real analytic function defined on 
the real positive axis. In the ordinary oscillator algebra the functionf(x) is defined by 

f ( x ) = x  ( 2 )  
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which leads to the commutation relation 

[ a , a ' ] = ~ .  

[ a , N ] = a  and [a t ,  NI = -at. (3) 

N = f ( a ' a ) .  (4) 

aa+ = g ( a t a )  (5 )  

The number operator N, by definition, satisfies the commutation relations 

It can he shown that this operator is given by the relation 

If equation ( I )  is true then the following relation is also true: 

where the function g ( x )  is defined by 

g(x) = F(1 +f(x))  and F = f - ' .  ( 6 )  
By induction the following relations can be proved: 

[a,  (a+a)"]= ( (g (a 'a ) )"  - ( a ' a ) " ) a  

and 

[a t ,  (a 'a )" ]  = -a'((g(a+a))" - (a 'a ) " ) .  

These equations imply 

[a,f(a'a)l= ( f ( g ( a ' a ) )  - f ( a ' a ) ) a  ( 7 a )  

[a',f(ata)l = -at(f(g(ata))  -f(a'a)). ( 7 6 )  

and 

Thus the number operator N = f ( a ' a )  satisfies equations (3). 
Assume that la) is a base of eigenvectors of the number operator N 

Nla) = ala). (8) 
Then equations (3) imply that the operator a (or a' )  is a destruction (or a creation) 
operator such that 

a l a ) = m l a  - 1) a'la)=&FTla+l) (9) 

[ a + l l = g ( [ a l )  or f([.+11)= I+f([.l). (10) 

[ a ] = F ( a ) .  (11) 

where [a] is a function of a; furthermore from equation (6) we can find 

Thus finally from these equations, we conclude 

The function F ( x )  is characteristic of the deformed oscillator. The knowledge of this 
function determines all the properties of the oscillator, just as in the case of Lie algebras 
the knowledge of the structure constants determines the properties of the whole Lie 
algebra; in this paper this function will be called structure function. 

The eigenvector IO), corresponding to the zero eigenvalue of the number operator 
N, satisfies the following relation: 

if F(O)=O (orf(O)=O) then a10)=0. (12) 
The structure function can be normalized such that F(1) = 1. 
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The eigenvectors of the number operator N = f ( a t a )  are generated by the formula 

(13) 

where 

These, 

" " 
[ n ] ! =  n [ k ] =  n F ( k ) .  

k = l  k = l  

envectors are also eigenvectors c 

a t a  + aa ') H = - (  A 
2 

corresponding to the eigenvalues 

; energy operator 

(14) 

A A 
2 2 

E. =- ( [ n  + I]+[  n ] )  =- ( F ( n  + 1 )  + F( n ) ) .  (15) 

Consider that'a given energy spectrum is defined by a real function H ( x )  such that 

A 
2 

E , , - H ( n + $ )  

then 

H(x+f)  = ( F ( x +  l )+F(x ) ) .  (16) 
The general solution of this functional equation is a quite complicated task. Special 

cases of this equation were studied by Buck (1946) as quoted by Boas and Buck (1964). 

3. The deformed oscillator equivalent to the Coulomb spectrum 

Consider the case of a shifted Coulomb potential with centrifugal term 

where R is the associated Rydberg's constant 

The energy spectrum is given by 

E.  = - RhZ2 

Here we shall fix 

s = p ' ( r +  1) 

for reasons which will be explained below. The function p ' ( x )  is the derivative of the 
beta function p ( x )  defined as 
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y = +'(/ + 2) + P ' ( /  + 1) 

we find 

A = -2yRhZ2 H ( x )  =- 1 +26) 

while the function F ( x ) ,  which is the solution of equation (16), exists and is given by 

(19) 
1 

Y 
F ( x )  =- (-p'(x+/+ 1)+ 6) .  

In order to have F ( 0 )  = 0, the constant S in the above equation, should be given by 
the relation (18), then the shift of the Coulomb potential (17) is explained. Also the 
value of the constant y is determined by the fact that the structure function F ( x )  is 
normalized to unity, as F(1) = 1. The structure function is an increasing continuous 
function for x 2 0 and for x + m converges to [a] where 

[m] = lim F ( x )  = S/ y 
X-m 

The structure function determines uniquely the matrix representation of the Fock space 
{ In ) } ,  n = 0, 1, . . . ,a, then a matrix representation of the operators a and a', N and 
H can be constructed: 

( n l a r l m ) = m  6,,+,  

1 
(n lHlm)=  -RhZ2 

(nINlm)= na,,,. 

Therefore a destruction-creation operator algebra is fixed; this algebra is the analogous 
algebra of the Coulomb potential as it happens in the case of the harmonic oscillator 
potential. 

4. Polynomial basis for the generalized deformed oscillator 

In this section we shall discuss the polynomial basis of the deformed oscillator 
equivalent to the Coulomb potential. Let Yt be the set of the analytic functions 

m 

defined inside the circle 121 <[a]. Let the projection operator Jk project the function 
f ( r )  to the truncated polynomial J k f ( r )  of degree k 

J k f ( z )  = 1 a,z" E JkX. 
" = O  

The space spanned by the deformed oscillator basis In) is equivalent to the space 
Yt spanned by the basis 

2" 
n = O , l ,  ..., a. m 
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Any function f ( z )  E X can be written as 

where 

and 

The series (21) converge for lzl<[co] if 

If"+ll< co, lim - 
,,-m If.1 

The element lz) is the coherent (but not normalized) eigenstate of the destruction 
operator a with eigenvalue I: 

(24) 

The multiplication of the function f ( z )  by z can be regarded as an application 
from the space of functions X into Z, and this operation corresponds to the following 
one: 

a1 z )  = 21 z). 

The derivative d/Jz is also an application defined in the space 7t 
m m 

(a/az) a$= 1 ( n + 1 ) a n + , z " ~ X .  (26) 
"=a n = a  

In the space X we can define the operator 

a i '  
a,z z 

Without difficulty we can show that 

The deformed derivative (a/a,z) can be constructed analytically. Consider the integra- 
tion operator Int acting on % as follows: 

Intf(z)-  f(u) du. lb 
Frnm the definition (19) of the structure function F ( x )  the deformed derivative is 
shown to be 
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The expansion (21) ofthe function f ( z )  corresponds to the deformedTaylor expansion 
around zero because we can easily show that 

The operator z 0 J/J,z is a one-to-one application in the subspace E- JOE, therefore 
the inverse of this operator exists in this subspace and is given by 

Using the above operator the integration operator Int, can be defined by 

Int,-(zoJ/J$)-'~z. (30) 

Without difficulty the following relation can be shown: 
Z n + l  

F(n+l)  ' 
Int,z" = 

For any function f ( z ) ,  given by equation (21), we can define the integral 

and by definition 

I a b f ( u )  dDu= IntDf(b)-IntDf(n). (31) 

The definition of the coherent state (22) and (24) implies that the deformed 
exponential function is defined by the following formula: 

The function exp,(r) converges if l z l< [oO] .  Without difficulty we can show the 
deformed generalizations of the usual identities: 

(e)" exp,[wz]=z"expD[wz] 

[oxexpD[wu] d,u= w-'(exp,[wz]-l) 

The space %f has also the structure of a Hilbert space with the product 

This structure is compatible with the expressions (21)-(23). 
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The above defined product can be formally generated by introducing a measure 
dp(i ,  z) on the complex z plane having the following properties: 

dw(i, z ) i"z"  = 8 , , [ n ] !  (34) I 
(fig)=/ d d - ,  Z ) J ( % - ( Z ) .  (35) 

and 

The basic properties of this measure can be easily deduced from equation (34); we 
shall list here only the most fundamental ones. if A is an operator defined on the finite 
dimensional Hilbert space spanned by the vectors In)  then there is a matrix representa- 
tion defined by ~ 

This operator corresponds to a kernel A(w, U )  acting on the space X 

A(w, G)=(wlAlu)= C A,,(wln)(mlu) 
m 

__-,, ,,.... - " 

and 

where the functionf(2) is defined by equations (21) and (23). 

corresponding kernels 
The product of two operators A and B corresponds to the convolution of the 

~~ where i is the uniiy in the Eiibert space spanned by iiie vector basis in). ?ne fo:loWiiig 
relations can be proved without difficulty, using the definition (34) of the deformed 
exponential function: 

d d %  2) e x p d u W ( Z )  =f(u) 
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By analogy, as in the 9-analysis case (see Exton 1983), we can define the binomial 
function 

[a][a+l]. . . [ a + n  - 13 
@(a; t ) =  1 1" 

n = n  [nl! 

If [ x ] = F ( x ) = l  the above sum is equal to (l-t)-", while if [x ]=F(x )=  
(9 ' -  l) /(q - 1) the corresponding formula for the 9-analysis case is found (see Exton 
1983, p. 120). The binomial case is a special case of the deformed hypergeometric 
function, but this subject will not be studied here. Using the binomial function after 
lengthy calculations, one can find the generalization of the Gauss integral 

@ ( l + n ;  t). 
(a6)" 

dp(Z, z )  exp,(&) exp,(zit) exp,(ia) = E - I " = n  [n l !  
In the case of the usual harmonic oscillator (F (x )=x) ,  the right-hand side of 
this formula is reduced to exp(a6/(1-1))/(1-1), in this case d p ( i , z ) =  
exp( - 1 ~ 1 ' )  d i  dz/m If A is an operator defined by equations (36), (37), then 

m 

dp(Z, z)A(z, i )=Tr(A)=  A",". I n=o 

These formulae indicate that the measure dp(Z, z )  has the basic properties of a Gaussian 
measure. 

The interesting problem, which consistently arises, is to clarify the connection 
between the Hilbert space spanned by the eigenvectors In) and the eigenfunctions of 
the Schrodinger equation with a Coulomb potential. The corresponding problem for 
the ordinary harmonic oscillator is the well known correspondence between the eigen- 
states In) in the creation-destruction formalism and the Hermite polynomials weighted 
by a Gaussian measure, which are the eigenfunctions of the Schrodinger equation. 

All the formulae of this section (except equation (28)) are independent of the 
choice of the structure function F(x); these formulae are general and applicable for 
a spectrum with denombrable but infinite cardinal number (Coulomb, harmonic oscil- 
lator potential or q-deformed oscillator, with 9 being a real number). In the case of 
a finite spectrum (Poschl-Teller potential or q-deformed oscillator with 9 being a root 
of unity) the corresponding formulae are given by Daskaloyannis (1992). 

5. Concluding remarks 

In this paper we have constructed an algebra of operators 

{a, at, N, 1) 

satisfying the anticommutation relations 

[ a , N ] = a  and [n ' ,N]=-a '  

[a, at] = F ( N +  1) - F ( N ) .  

The structure function F ( x )  is given by equation (19), then this algebra corresponds 
to the energy spectrum of the Coulomb potential. The polynomial basis and the 
associated deformed integration and derivation are constructed. The formulae given 
in section 4 are quite general and they can be applied to any case of energy spectra 
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with an infinite number of energy eigenvalues with an accumulation point finite or 
infinite. 

We must point out that there is a deformed analysis appropriate to the Coulomb 
deformed oscillator, as the q-deformed analysis corresponds to the q-deformed oscil- 
lator algebra or the usual analysis is appropriate to the ordinary oscillator algebra. In 
this kind of analysis there is not defined a simple Leihnitz rule of the differentiation, 
although some of the results of the usual analysis can be produced for different kinds 
of deformed analysis. This topic seems to he an interesting topic for a forthcoming 
publication. 
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